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PRECONDITIONERS FOR NONCONFORMING 
DISCRETIZATIONS 

PETER OSWALD 

ABSTRACT. We prove an abstract norm equivalence for a two-level method, 
which allows us to reduce the construction of preconditioners for nonconform- 
ing finite element discretizations to known cases of conforming elements. 

1. INTRODUCTION 

The construction of fast solvers for nonconforming finite element discretizations 
has attracted the attention of many researchers. In the context of multilevel or 
multigrid-like methods, the main difficulty is the fact that the natural sequences of 
nonconforming finite element subspaces are nonnested and form external approxi- 
mations involving modified bilinear forms and norms. In comparison to the varia- 
tional multilevel theory for conforming finite element schemes (cf. [47, 49, 7, 38] for 
some surveys), one has to be careful with designing the so-called intergrid transfer 
operators (restriction and prolongation) and to control all other perturbations. 

Attempts to propose a general theory in this direction have been made several 
times, see e.g. the papers by Bramble, Pasciak, Xu [8], D6rfler [26, 27]. We 
also mention a series of contributions by Brenner [10, 11, 12, 13, 14], where the 
most popular simple nonconforming elements have been examined. Many papers 
[6, 10, 48, 35, 36, 45] have been written on the nonconforming P1-element originally 
introduced by Crouzeix, Raviart [22]. For this particular element, the analysis 
may be considerably simplified by observing that the conforming linear element 
functions form a proper subspace of the set of nonconforming P1-elements on the 
same triangulation, see [48, 36, 45]. Roughly speaking, there is a very simple two- 
level method reducing the nonconforming discretization to the conforming one for 
which fast solvers are already available. 

In this paper we want to generalize this idea. In ?2 we give an abstract theory 
for a two-level method, which allows to switch from a given symmetric positive 
definite variational problem 

(VP) Find i E V such that &(iii) = (i), Vi E V, 

to another one, 

(VP) Find u E V such that a(u,v)=4b(v), VvEV. 

The applications to nonconforming finite element discretizations for second- and 
fourth-order elliptic problems are given in ?3. For a number of examples, we show 
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how to verify the assumptions of the abstract theory. The main ingredients are 
auxiliary discrete scaled L2 bilinear forms and appropriate quasi-interpolant op- 
erators Q V -* V resp. Q: V -* V that preserve locally polynomials of low 
degree. After switching to (VP), multilevel preconditioning for the nonconforming 
discretization (VP) is a consequence of the known theory of multilevel precon- 
ditioners for conforming linear elements resp. Powell-Sabin triangles for second- 
resp. fourth-order problems. However, other types of preconditioners for (VP) can 
be used as well. 

The idea of switching to a spectrally equivalent reference discretization is clearly 
not restricted to the cases considered in this paper and has implicitly and explicitly 
been explored by other authors, too. It also applies to certain complicated conform- 
ing elements and to the situation when the fine-grid triangulation is not produced 
by a standard refinement process, as it is typical for the multilevel solvers. After 
finishing the first draft of this paper we have learned about recent papers by Sarkis 
[43], Cowsar [21] and Brenner [15, 16, 17] that deal with similar questions in a do- 
main decomposition framework. However, our approach is different in the technical 
details and emphasizes the idea of using multilevel preconditioners for some low- 
order conforming elements in a canonical way in the construction of preconditioners 
for more complicated situations, especially for nonconforming discretizations. 

2. THE ABSTRACT NORM EQUIVALENCE 

Throughout this paper, let V and V be two finite-dimensional real Hilbert spaces. 
Let & : V x V -* R resp. a V x V -* R be symmetric positive definite (spd) 
bilinear forms, and 4 E V7* resp. 4 E V* be linear functionals on V resp. V. We 
consider the variational problems (VP) and (VP) as formulated in the introduction. 

Assume that W = V + V makes sense as a Hilbert space, and let there be given 
two further auxiliary spd bilinear forms a, b: W x W -* R. In the applications 
below, b represents an appropriately scaled L2 scalar product while a is a suitable 
spectrally equivalent extension of both a resp. a. Having this in mind, the following 
additional assumptions seem to be natural (here and in the sequel, generic constants 
are denoted by c (O < c < oo), and stands for a two-sided inequality): 

(Al) The restrictions of & to V x V resp. V x V satisfy 

&( If)e&{Ii), a(v, v) t v(v, v) V3 vE V, Vv E V. 

(A2) The following inverse property holds: 

a(w,w) < c b(w,w) VW E W. 

(A3) There exist linear operators Q: V -* V and Q : V V such that 

b(v-Qv, v-Qv) < c a(v3, i) Vv E V, 

b(v-Qv,v-Qv) < c.a(vv) V v E V. 

Theorem 1. With the above notations and the assumptions (Al), (A2), (A3), we 
have 

(1) a pv inf { b (w, wv) + a (v, v)} V v E V 
'CV, vCV v=f+QV 

(2) a(v, v) inf {b(w, w) + ?(v, v)}, V v E V, 
wEV, V v=w++Qi 
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with constants depending only on the constants in (Al), (A2), (A3). 

Proof. Because of symmetry of all assumptions and formulations, it suffices to es- 
tablish (1). First observe that the linear operators Q and Q are bounded: 

(3) &(Qv,Qv)<c a(vv), Vv V, 

(4) &(Q9,Qi)?c< a(i5,i9), Vi3EV. 

Indeed, we can start with the obvious inequality 

a(Qv,Qv)< 2. (a(v- Qv,v- Qv) +a(v,v)). 

Here, the first term is estimated using (A2) and (A3) as follows 

a(v- Qv,v- Qv) < c* b(v - Qv,v - Qv) < c &(vv). 

Applying the second equivalence of (Al) gives (3); the proof of (4) is completely 
analogous. 

Let v = Iv+? Qv be an arbitrary decomposition for any given v C V (fD C V, v E 
V). From the first equivalence in (Al), (A2), and (3), we get 

Q(v, 11) <c c*a (i, 11) < c. (&t(, v13) + af(Qv, Qv)) < c. (b(113, zD) + a(v, v)). 

The upper bound in (1) follows by taking the infimum with respect to all decom- 
positions. 

To prove the opposite inequality, consider the particular decomposition of v C V 
given by 

v=QDQ, eC3=i3-Qv=ii-QD+v- Qv. 

Since by (A3) 

b(fv, ID) < 2. (b(i5 - Qi3,b - Qi3) + b(v - Qv, v - Qv))c ((, i) + &(v, v)), 
and by (Al) and (4) also 

a p I ) < c a ij) I a (v, v) <c a^(v, )c a (Qb, Qb) <c -&(ij, 

we get 

b (wC, C) +a (v, v) <c a &(^), 

for the above decomposition which shows the assertion. LI 

As was stated in the introduction, the norm equivalence (1) is the basis for a 
certain two-level method to switch from (VP) to (VP). This two-level method 
corresponds to the additive subspace splitting 

V = fV + V , 

where the three spaces are equipped with appropriate bilinear forms such that (1) 
coincides with the basic norm equivalence for bounding the condition number of the 
corresponding additive Schwarz operator. Note that (2) might be used to switch 
from (VP) back to (VP), a possibility we will not make use of in this paper. 

To be more precise, let us recall the formulation of the so-called fictitious space 
lemma by Nepomnyaschikh [33, 34], see also [38, 29]. Let Ho and H1 be two finite- 
dimensional Hilbert spaces, with the scalar products denoted by (., .)o resp. (., .)i. 
Let the bilinear forms ao: Ho x Ho -> R resp. a, : H1 x H1 -> R be generated 
by the spd operators AO: Ho -* Ho resp. A1 : H1 -+ H1. Finally, consider 
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any surjective linear operator R: H1 -* Ho, together with its adjoint operator 
R*: Ho -) H1 given by (Ru1,uo)o = (u1,R*uo)1 for all ui C H1 and uO C Ho. 

Lemma 1. Under the above assumptions, we have the identity 

(5) ao((RA-1R*Ao)-luouo) = fffuofff2 inf ai(vi, vi) , 
v GHi: Rvj=uo 

for all uO E Ho. As a consequence, the minimal and maximal eigenvalues of the 
linear operator RA-jlR*Ao can be given by 

(6) Amin = inf ao(uo, uo) Amax =_sup a_(uouo) 
uoCHo\{O} IIIuoIf12 uoAHo\fO= aoIuoIuo) 

In the applications, it is assumed that Al can be easily inverted and that the 
multiplication by R resp. its adjoint is also a cheap operation. Then, RA17lR* 
can be used as preconditioner for AO provided that the ratio of the eigenvalues in 
(6) is not very large. The latter can be checked by evaluating the constants in the 
two-sided norm equivalence 

(7) ao(uo,uo) IIIuo II2 , Vuo EHo. 

To apply Lemma 1 to our situation, let us fix Ho = R" and H1 = RW x Rn, 
where A = dim V, n = dim V. The connection between the vectors from Ho, 
H1 and the finite element functions in V, V x V, resp., will be provided by the 
standard nodal bases in V and V. Denote by A, B resp. A the stiffness matrices of 
the bilinear forms a, b (restricted to V x V) resp. a in these bases. Then we set 

ao(x, ) = (Ax)RiA Qiv) 

for all x, y E Ho, where &, v E V are the finite element functions corresponding to 
x, y via the nodal basis in V, and 

ai(x, x), (, y)) = (B3, 0) R + (AxY) Rn _ b(&,iv) + a(u, v) 

for arbitrary (xx), (b, y) E H1 (in analogy, u, v E V are the functions associated 
with x, y E Rn through the nodal basis in V). Finally, denote by S the n x h 
matrix describing the action of Q in the respective nodal basis representations, and 
set 

Rx, x) = x + , 

which is obviously a mapping from H1 onto Ho. With all this notation at hand, we 
see that (7) reduces exactly to the norm equivalence (1). Thus, the constants in the 
upper and lower estimate contained in (1) describe the quality of preconditioning 
the matrix A by the symmetric preconditioner B-1 + SA-1ST. Moreover, B-1 
and A1 can be replaced by any symmetric preconditioner Ob and Ca, resp. We 
subsume this in the following 

Theorem 2. Under the above notations and the assumptions of Theorem 1, the 
spectral condition number of the matrix (B-1 + SA-1ST)A equals the ratio of the 
best constants in the upper and lower inequality of the norm equivalence (1). In 
addition, if Cb and Ca are symmetric preconditioners for B and A, resp., and satisfy 
the spectral bounds 

(8) Amax(CbB), Amax(CaA) ? Amax , Amin(CbB), Amin (CaA) > Amin, 
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then C0 = Ob + gCagT is a symmetric preconditioner for A with a bound for the 
spectral condition number of CaA depending on the constants in (8) and (1): 

Amax 9 (9) (O(CaA) < A ,XS((B-l + SA-1ST)A) 
mm 

In most of the applications, the auxiliary form b will be a scaled L2 scalar 
product which leads, after switching to its discrete relatives in the nodal basis 
representation of V, to a simple diagonal matrix for the preconditioner Cb. For 
Ca (the preconditioner for the reference problem (VP) on V), we favor multilevel 
methods for which a simple, regularity-free theory is available, see [38]. This, 
however, has restricted our choices for the reference discretization (VP) in this 
paper. An alternative are symmetric multigrid preconditioners as analyzed, e.g., in 
[7], which are available in many more situations. 

The complexity of S resp. ST depends on the choice for the operator Q, more 
precisely, on its representation with respect to the nodal bases of V and V. Note 
that the operator Q does not play any role in the corresponding algorithm. Since, 
for the typical choices of the forms a, a resp. b (HS inherited resp. scaled L2 scalar 
products), the condition (A3) is fulfilled if Q and Q provide good L2 approximation 
for smooth functions, we use quasi-interpolant techniques for their construction. 
This automatically leads to sparse matrices S. Details will be explained in ?3.2. 

3. PRECONDITIONERS FOR NONCONFORMING ELEMENTS 

3.1. The nonconforming P1 element. To highlight the main ideas, and to start 
with a simple example, let us consider the discretization of the Poisson equation 
equipped with zero boundary conditions by nonconforming triangular P1 elements 
in R2 (the three-dimensional case is fully analogous). Let T be any fixed regular 
but not necessarily quasi-uniform triangulation of a bounded polygonal domain Q 
in the plane, and introduce V as the set of all piecewise linear functions with respect 
to T which are continuous at the midpoints Me of all interior edges e and take zero 
values at the midpoints of boundary edges. To each interior edge e we associate 
the nodal basis function Ne E V which is 1 at Me and zero at all other midpoints. 
The form on V is given by 

a (^) a, i J Vu Vdx 
A~ET 

As a standard candidate for the corresponding problem (VP), we take the space 
of conforming linear elements V = V n Ho (Q) on the same triangulation, equipped 
with 

a(u~v)=&(u v) =Vu.Vvdx 

The standard nodal basis functions in V will be denoted by Np, where P is in the 
set of interior vertices of T. 

Since V C V we have W = V. The auxiliary forms a, b can be given by the 
formulae 

a v) = &(iiiv), b(i&,i ) = ZE (Me) i(Me)v V u&ii E V 
e 

(summation with respect to all interior edges). If the triangulation is in addition 
quasi-uniform, with h denoting the typical size of the triangles, then b(iQ,ii) 
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h-2. JIQ 2, i.e., the form b essentially represents a scaled L2 scalar product in this 
case. Obviously, (Al) and (A2) are satisfied, the latter property following from 

(10) a &(i'& ') = &(i, i&) E E (i(Me) -(M',))2 
\AET e,e'CZi 

(here, the regularity of the triangulation enters the constants). 
To verify (A3), we need to define Q and Q. For Q we take the natural imbedding 

of V into V. Since for this choice Qv = v for all v E V, the required approximation 
property is obvious. The corresponding matrix S (the matrix representation of Q 
with respect to the above nodal bases) is very sparse, it contains two entries 1 

2 
per column. The operator Q does not enter the algorithm; thus, any choice that 
satisfies the estimate in (A3) (with a good constant) is acceptable. For example, 
we may assign to any interior vertex P one of its adjacent edges (denoted by ep) 
and define the nodal value of Qit E V at P by (Qii)(P) = ii(Mep) ; for boundary 
vertices we set (Qi&)(P) = 0. Alternatively, one could propose to take the interior 
nodal values of Qii as the average of the nodal values ii(Me) for all e adjacent to 
interior points (see, e.g., [37, 45]). 

In order to estimate b(i - Qii, i& - Qii), observe that by definition of Q 

lii(Me) - Qii(Me) I < 2(fi(Me) - 'i(Me') I + lii(Me) -i(Me,") |) 

where the edges e, e' resp. e, e" have a common endpoint. Since for the regular 
triangulation under consideration the number of edges adjacent to an arbitrary 
vertex does not exceed a fixed number, the above two terms can be estimated by a 
fixed finite number of terms L&(MeJ) - (Me2)1, where each pair e1, e2 belongs to 
one of the triangles in T. Note that each such pair does not occur (for all different 
e) more than a fixed number of times. Taking the squares of the expressions and 
summing up, we obtain from the definition of b and by (10) 

b(iu - Qii, it - Qii) = Z(i(Me) - Qiii(Me))2 

<C~ ScS (i2(Me)ii(Mei))2 < C. a(% 
ACT ee/'mA 

which is the estimate required in (A3). 
Thus, by Theorem 2 we arrive at a preconditioner for the nodal basis stiffness 

matrix A of the nonconforming P1 discretization of the form CA = I + SCA9T. 
Here, I is the h x h identity matrix associated with our specific form b, S describes 
the action of Q as explained above, and CA is an appropriately scaled (compare 
condition (8)) preconditioner for the nodal basis stiffness matrix A corresponding 
to the conforming linear finite element discretization on the same partition T. In 
[36], the BPX multilevel preconditioner [9] was used and tested for this purpose. 
In this case, (8) is satisfied with moderate constants, under minimal restrictions on 
the solution and the dyadic refinement process. Thus, in this case (triangulations 
obtained by regular dyadic refinement), the preconditioner CA yields uniformly 
bounded condition numbers n(CAA) for all refinement levels. Obviously, for this 
choice of CA and S, the operation count per preconditioning step is proportional 
to the discretization size h. Since the BPX preconditioner is equally well-suited for 
triangulations obtained by nested refinement (see, e.g., [4, 23, 38]), and the above 
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construction does not require quasi-uniformity, we can also work with reasonable 
adaptivity concepts in the nonconforming P1 element case (compare the recent pa- 
per [31]). But note again that the theory allows us to use for CA any (multilevel, 
multigrid, or other) symmetric preconditioner corresponding to the conforming dis- 
cretization (VP). 

Let us finish this subsection with some remarks. The same arguments can be used 
for a nonconforming P1 discretization of a Poisson problem in the 3-dimensional 
case. Also, preconditioning matrices for other nonconforming or conforming dis- 
cretizations of more general second-order H1 or Ho-elliptic boundary value prob- 
lems can be designed along the same lines. Finally, though natural, the above 
choice of Q is by no means the only one which satisfies the assumption (A3). For 
example, one could have associated with any interior edge e one of its endpoints 
(denoted by Pe) and introduced Q by 

QU(Me) = U(Pe) v U E V; 

for boundary edges these values are 0 as before. Obviously, 

b(u-Qua u-Qu) = AZ lu(Pe)-u(P/)I 2U 
< C * a(u, u) = c * e(u, u), V u E V, 

e 

where P' denotes the second endpoint of e. This choice would further simplify the 
multiplication by S resp. ST in the preconditioning step. A natural approach to 
the construction of suitable Q, Q will be discussed in the following subsection. 

3.2. Sufficient conditions for (A3). For more complicated situations, especially 
for higher-order elliptic problems like the plate bending problem discussed below, 
one is interested in simple criteria for the choice of Q and Q. In the applications to 
second- and fourth-order elliptic problems, scaled (discrete or continuous) L2 scalar 
products are typically used for the form b while a resp. & are equivalent to modified 
H'-seminorms for 1 = 1, 2. In this case, the concept of quasi-interpolants will be 
useful. Suppose that V and V are finite-dimensional spaces of finite-element-like 
piecewise polynomials over a regular partition T. To each subregion A E T we 
assign an enlarged set K(A) which is the union of A and possibly some of the 
A' adjacent with A (adjacent means that the closures of A and A' have common 
points). In most of the standard finite element examples, we can even assume that 
K(A) = A, but in some cases a larger K(A) is needed, see ?3.3. By the regularity of 

T, we have h(A') h(A) for the diameters of all A' E K(A). Since the evaluation 
of Qu enters the algorithm and we are interested in a maximally local and simple 
construction, the following restricted definition of quasi-interpolants will be used; 
an analogous definition applies to Q. We call Q V -* V quasi-interpolant of 
order 1 > 1 if 

* it is local and L2 bounded, i.e., 

(11) Qu=0 onA, VuEV: u=0 onK(A), 

and 

(12) 11QU 1L2(A) < Cal J|U|JL2(K(A)) 

with a constant c independent of A E T and u E V, and 
* preserves polynomials of total degree < 1, i.e., 

(13) Qp = P 
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for all polynomials p of degree < 1 (it is assumed without further mentioning 
that the restrictions of all such polynomials to Q belong to the natural domain 
of definition of Q). 

Concerning the bilinear forms, we assume in addition to (Al) that 

(14) b(W,W) < c h(A)-21 .a(A). WIIL2(AV)' Vw E WW 

and 

(15) Za(A\).i+,<c.&(wiw), Vw E W. 

for a certain set of moderately changing positive constants a(A), i.e., we assume 
that the ratios a(A)/a(A') are uniformly bounded for neighboring subregions 
A, A'. These constants are typically determined by the forms & resp. a and can 
be used to model coefficient dependencies. Afterwards, b is constructed such that 
(14) and (A2) hold true (the constants a(A) will enter the diagonal preconditioner 

Ob in a natural way). In (15), |U1i,G denotes the H'(G) seminorm controlling all 
lth-order derivatives of u. 

One may generalize (14), (15) to a form which also includes lower-order local 
Sobolev. seminorms in (15). This generalization is interesting for adequately dealing 
with lower-order Helmholtz terms but will not be further elaborated in this paper. 
Moreover, in all examples considered in the following subsections, we will take 
a(A) = 1. 

Lemma 2. Assume that Q V V and Q V V are quasi-interpolants of 
order 1, and that the forms a, b satisfy (14), (15) with the same 1. Finally, for any 
ib E V U V and any A E T we assume a local Bramble-Hilbert estimate of the form 

(16) inf Ijfw-_P112(K/) < c h(A)2 E 1wl,C,1 . p: deg (p) < 1 L cK())-A) A 

Then (A3) holds. 

Proof. Consider the approximation property in (A3) for Q. By (14), (15), the 
problem reduces to local estimates of the following form: For any A E T and any 
polynomial p of degree < 1, using (11)-(13), we have 

IIV-QV IIL2(A) < IIV- PIIL2(A) + IIQ(V-p) IIL2(A) < C IIV PIIL2(K(A)) 

Taking the infimum with respect to p and applying (16) to each K(A), we arrive 
at 

V - QVII L2(A) < C h(A), 
A'CK(A) 

To get b(v - Qv,v - Qv) < c a(v,v), it remains to multiply by a(A) h(A) 
to take into account the moderate change of a(A') over K(A) and to look at (14), 
(15). The proof for the second estimate is completely analogous. D 

Although Lemma 2 looks very technical, most of its assumptions are easily ver- 
ified. The condition (16) is necessary if K(A) =& A since V C W is usually not 
contained in H' (Q) for nonconforming discretizations. 

One has to be careful with extending the definition of Q, Q such that (13) holds 
for all polynomials, especially near the boundary where boundary conditions may 
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FIGURE 1. Powell-Sabin triangle 

cause some technical problems. For example, in the definition of Q for P1 elements 
given in ?3.1, one would have to change the rule for the boundary vertices in order 
to have (12): For a vertex P E aQ, there exists a boundary edge e with P as 
endpoint, and we define Qii(P) =iv(M6) as for interior vertices. This modification 
does not change the Qii for any u E V, but now (13) is naturally satisfied (with 
I = 1, i.e., constants are preserved). We hope that the following examples show 
that the quasi-interpolant concept is useful, and justify the separate formulation of 
Lemma 2. 

3.3. The Morley triangle. The Morley triangle is of some importance in connec- 
tion with the lowest-order divergence-free Raviart-Thomas element for the Stokes 
problem in two dimensions and also for plate bending. We refer to [18, 28] for 
generalities, and mention the papers [40, 26, 11, 30], where multigrid methods 
and preconditioners are proposed. In contrast to these papers, we will relate the 
discretization of an appropriate fourth-order elliptic boundary value problem by 
Morley triangles to the corresponding conforming discretization by Powell-Sabin 
elements. Multilevel preconditioners with optimal convergence properties for the 
latter have been derived in [37]. 

We recall the definitions. We consider a clamped Kirchhoff plate which is mod- 
elled by the symmetric, Ho elliptic, variational problem 

(17) a(u,v) _ t aijuaijv+AAu. Av} dx 4b(v) jf vdx, 

with the solution u E Ho (Q) representing the deflection of the plate. The material 
constants bp, A are fixed positive numbers. 

Let T be as in ?3.1; the finite element spaces V resp. V of conforming Powell- 
Sabin macrotriangles resp. nonconforming Morley triangles are composed from the 
local interpolation problems shown in Figures 1 and 2. The Powell-Sabin macro- 
triangle is a composite Cl element consisting of quadratic polynomials in all 12 
subtriangles which are uniquely determined by the following 12 degrees of freedom 
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FIGURE 2. Morley triangle 

(and the interior C1 smoothness requirement): function values and gradients at the 
vertices-and normal derivatives at the midpoints of the edges of the macrotriangle. 
At boundary vertices and edges, the degrees of freedom are set to zero to match the 
homogeneous boundary conditions. The resulting space is conforming V C Ho (Q). 
The problem (VP) is defined simply as the restriction of (17) to V. Note that 
the Powell-Sabin element is, for several reasons, more popular for representing Cl 
surfaces in computer aided geometric design than for the finite element analysis of 
plates. However, here it will not be used for the discretization itself but play the 
role of the reference space to construct a preconditioner for another discretization 
of (17). 

In the case of the Morley element, in each triangle a quadratic polynomial is 
defined by the following 6 degrees of freedom: function values at the vertices and 
normal derivatives at the midpoints of the edges. Once again, to nodal points at 
the boundary we assign zero values. Since the resulting space is nonconforming 
(V - Ho (Q)), the bilinear form on V is usually changed (cf. [19]) into 

(18) (f, vi)= Z a(b a , v i5 ) (f@() = @(v) )) 

On W we define the two auxiliary forms 

(19) b(zCi9i) = Z h(A)-4 J? 19wdx 

and 
2 

(20) QYiw') = i a&ijji9aj dx 
A ET A i,j=l 

With this choice, the properties (Al), (14), and (15), here with I 2 and ae(A) = 1, 
are obvious, the constants may depend on bp, A, and on the regularity of T. The 
inverse property (A2) reduces to local estimates on each triangle as usual, and is 
left to the reader. 
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We introduce the quasi-interpolants Q and Q. Let Np and Ne denote the nodal 
basis functions for the Morley element case, and define 

(21) QV = EZ(nv(Me) f e + E v(P) Np, Vv C V, 
e P 

where E> indicates that the summation is carried out for all (interior and boundary) 
edges resp. vertices. Clearly, Q: V -* V. This operator naturally extends 
onto W, and is the identity when restricted to V. It makes also sense for all 
quadratic polynomials and preserves them globally on Q. Thus, (13) is satisfied, 
even with I = 3. The property (11) is obvious by definition, with the minimal choice 
K(A) = A, while (12) is a consequence of the local L2 stability of both Morley and 
Powell-Sabin elements (which holds uniformly in A for regular triangulations): 

IIL(L) S h(A)4&eQv(M6)2 + 
E 

h(A)2QV(p)2 
eC PEi\ 

? {5 h(A)4&mV(Me)2 + 5 (h(A)2V(p)2 + h(A)41VV(P)12} IIVII2(A)- 
eCA PEA 

The operator Q: V V is defined by 

anQij(Me) =&n4(Me)X Qii(P) = w(P), 

while the gradient values at a vertex P are determined from two arbitrarily fixed 
non-collinear edges (for boundary vertices, these edges have to be at the boundary, 
too) such that globally linear polynomials are preserved. In the exceptional case 
where two boundary edges meet at an artificial vertex (with interior angle 7r), the 
construction of Q has to be modified appropriately, i.e., the tangential derivative at 
the boundary vertex P will be defined by the divided difference of function values of 
neighboring boundary vertices). Analogous modifications which ensure polynomial 
preservation with I = 2 in (13) and zero boundary conditions of Q'b for all vb E V, 
are necessary if a slit has to be dealt with. Then, (11)-(13) can be verified for Q in 
the same way as above. However, this time, K(A) should contain all A' adjacent to 
A; compare the definition of the gradient values of Qb at vertices and the conditions 

(11)-(12). 
Therefore, the verification of (16) is necessary for v E V (for V C H2 (Q) the 

usual Bramble-Hilbert lemma will do the job). Let pA be the quadratic polynomial 
coinciding with v on A, and let A' c K(A) be such that it shares the common edge e 
with A. Denote the endpoints of this e by P and P'. The polynomial q P= pA,-pA 
coincides with v - pa on A', and owing to the interpolation conditions for the 
Morley elements, we have q(P) = q(P') = anq(Me) = 0. Under this condition, we 
can easily check that 

JlqJJL2(A') -< C h(A\)2. * qJ2,A1 

Indeed, without loss of generality, we may assume that e = [-1I1] and that h(A) 
h(A') 1. From q(1) = q(-1) -= 2q(0) = 0 we see that q(x1,x2) = a(x 2-1) + 
/3XlX2 + 'yx2 while the second order partial derivatives of q take constant values 
a1iq(x1,x2) - 2a, &9l2q(x1, x2) = 3, &221q(xl,x2) = 2-y on R2, which gives the 
desired estimate. Since q = - = pA,- pa on A', we get 

h(A)211ii -PAIIL2(A') < ctqI2,AI < C{tPAt2,A/ + IPA'12,A'} < C{fv)2,A + 1VI2,A/} 
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for the three triangles A' c K(A) which possess a common edge with A. Applying 
this estimation technique repeatedly, after finitely many steps we arrive at 

h(A>4. - Il-PAIL2(K(A)) ? C S 2,A 
A' EK(A) 

Now it remains to observe that IPA 2,K(A) tv 2,A and to approximate the qua- 
dratic polynomial pA by arbitrary linear polynomials on K(A). This eventually 
gives (16) for 1 = 2. 

After this examination of all conditions of Lemma 2 and Theorem 1, we can 
state the main result of this subsection. We recall the notation used in Theorem 
2 of ?2. Let A, B resp. A be the nodal basis stiffness matrices of the forms a, b 
on V resp. a on V. The matrix representation S of Q can be derived from (21), 
the multiplication by S reduces to copying some entries of a vector from R' into a 
shorter vector from RW (in the present case, A = dim V < n = dim V). Since 

(22) b(i),v) E&niv(Me)2 ?5 h(P)-2 i(P)2 Vi , 
e P 

where h(P) is taken such that h(P) h(A) for all A adjacent with the vertex P 
and the summation is carried out for all interior edges e resp. interior vertices P, 
B possesses a diagonal preconditioner Cb satisfying (8) with constants depending 
only on the regularity of T. A multilevel preconditioner Ca for the Powell-Sabin 
discretization matrix A, of optimal complexity and satisfying (8), is available from 
the theory in [37], if T = Tf is obtained by J steps of regular dyadic refinement 
from a coarse triangulation To of Q. Nested refinement has not been considered 
in [37]; an extension in this direction presents some technical but not principal 
difficulties (compare ?4.2.2 of [38]). For this reason we restrict the formulation of 
the following theorem to the regular refinement case. 

Theorem 3. Let A be the stiffness matrix of a nonconforming Morley finite ele- 
ment discretization of the plate bending problem (17) using the modified form (18) 
with respect to a triangulation T = Tj obtained by regular dyadic refinement from 
To. Then, uniformly in J = 1, 2, .. ., we have 

(23) I<((Cb + SCaST )A) < C, 

where the constant C only depends on the regularity constant of the triangulation 
To, and on b and A. The preconditioner CA = Cb+SCaST requires O(A) operations 
per matrix-vector multiplication and is based on a V-cycle multilevel preconditioner 
Ca for the corresponding discretization by Powell-Sabin elements. The matrices S 
and Cb can be derived from (21)-(22) as explained above. 

3.4. Zienkiewicz triangle. The interpolation conditions associated with the Zien- 
kiewicz triangle (or reduced cubic Hermite triangle) are indicated in Figure 3. The 
local polynomial space is a 9-dimensional subspace of total degree-three polynomials 
p satisfying the constraint 

3 

6p(SA) - 5{2p(Pi) - Vp(Pi)(Pi - SA)} 0 
i=1 

where SA denotes the barycenter, and Pi the vertices of the triangle A. For any 
regular T, the resulting finite element space V is nonconforming with respect to 
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FIGURE 3. Reduced cubic (Zienkiewicz) triangle 

Ho' (Q), the functions are Co but not Cl (across interior edges) . As before, boundary 
interpolation conditions are set to be zero. 

There are different possibilities to introduce the modified form a which replaces 
a (given by (17)) on V. We quote the following three possibilities from [5, Ch. VI, 
5], where references to the original papers are given (cf. also [19, 32]): 

(24) &o(iiiV) = a(iiA,\, A), 

(25) ai (VbV) = a* (Oi, 0i) 

(26) &2 (v, v) = a* (Oii, 0i5) + M A h(A)2 j(Viw - 6i) . (Vi3 - 6f3) dx 

for all ii, E V. Here, a* (^, ~b) is a bilinear form defined for vector functions 
c+ (Ho'(Q))2 such that a(uv) = a*(Vu,Vv), i.e., 

a* (ff)=XM E ij (0),Eij (Xb) + A div X div If dx Eij (0) A- dig + 0i Oi) 

The mappings 0 and 0 are discrete gradient operators on V: Of) is componentwise 
defined by quadratic Co Lagrange element functions over T (with the components 
modelling the partial derivatives of v), with the nodal values given by VW(Pj) for 
vertices; at the midpoints Pij of the edges the corresponding values are obtained 
by orthogonal transformation from the directional derivative &eiV(Pij) and from 
2 (&I3 (Pi) + &b3 (Pj)), which stands for the nonexisting &an'(Pij). By definition, 
O maps into the space of linear finite element vector fields over T according to 
0i5(P) = Vi3(P) for all vertices. Finally, v > 0 is a positive parameter which we 
recommend to choose according to v bp (see below). 
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The following lemma is more or less known from the literature (cf. [5] and 
the original references cited therein) and states the coercivity of & on V, which is 
necessary for the correctness of the variational problem (VP). 

Lemma 3. The forms (24)-(26) are spd on V and satisfy 

cp a (i, i) < o (ia, ii) <c (p + A) a (u) ia) 

cA &(ii, i) < & (iiii) < c( + A) a(u) a) 

c min (pl, v) -a (i, ai) <-& a(i, ai) < c(p + A + v) a 6(i, ia) 
for all i E V, where a(ii, i^) is given by (20). The constants c in the two-sided 
estimates only depend on the regularity constant of the underlying triangulation. 

We will leave the elementary proof to the reader (for &o the above result is 
obvious by definition of a and of the H2 seminorm). Note that the choice v p 
would be natural; however, in the context of Reissner-Mindlin plate models, the 
additional term in (26) has prescribed meaning, and the parameter v is proportional 
to the thickness of the plate. We will not go into details, but rather refer to [5] for 
a discussion of this point. 

Note also that the convergence properties of the discretizations corresponding 
to the above three modified forms are quite different. For example, with do con- 
vergence is observed only for special triangulations; the formulation with &I which 
appears in the context of the DKT-element family was analyzed in [42], see also [41] 
or [5, Ch. VI, 5]. However, by virtue of Lemma 3, there is no difference for the three 
formulations with respect to the construction of a preconditioner via Theorems 1 
and 2. 

To this end, we again make use of the Powell-Sabin finite element subspace V 
(see the subsection for the Morley element) on the same triangulation. Introduce 
Q: V -- V in a natural way by defining the nodal values 

(27) Qv(P) v(P), VQv(P) = Vv(P), 

at all vertices P of , and Q V-)V by 

Qi (P) = v (P), VQb (P) Vb (P) v On Qb (Me) = (&n' (P) + &n' (P')) , 
2 

for all vertices P and edges e (for the latter, P, P' denote the endpoints of e in 
the above formulae). This definition of Q and Q obviously guarantees (11)-(13) 
with I = 2 and K(A) = A in both cases. For the auxiliary forms on W we use the 
definitions in (19) and (20), which makes it easy to prove the remaining assumptions 
of Lemma 2 and Theorem 1. 

Indeed, (14), (15) are automatically satisfied (with ca(A) = 1). (Al) is contained 
in Lemma 3 for v E V, for v E V, see ?3.3. The inverse property (A2) reduces 
by affine transformation to analyzing the situation on a standard triangle as usual, 
and is left to the reader. Finally, since K(A) = A and the restriction of V U V to a 
triangle A belongs to H2(A), (16) follows from the usual Bramble-Hilbert lemma 
and a scaling argument. 

After completing the verification of the assumptions of Lemma 2 and Theorem 
1, we can formulate the complete analog to Theorem 3. With A, B, A denoting the 
corresponding stiffness matrices, S now defined by (27), we make again use of the 
multilevel preconditioner 0a for the Powell-Sabin discretization matrix (compare 
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?3.3) while Ob is a diagonal matrix derived from discretizing b via the obvious 
equivalence 

(28) b+viv) { lVi(P) 2 ? h(P)2 * (P)2}, V E V. 
P 

Theorem 4. Let A be the stiffness matrix of a nonconforming Zienkiewicz element 
discretization of the plate bending problem (17) by using any of the modified bilinear 
forms (24)-(26), where the underlying triangulation T = Tj is obtained by regular 
dyadic refinement from To. Then, uniformly in J = 1, 2,..., we have 

(29) 'f((Cb + SCaST )A) < C, 

where the constant C depends only on the regularity constant of the triangulation 
To, and on M, A, and v (cf. Lemma 3). The preconditioner CA Ob + gCaST 

requires O(ii) operations per matrix-vector multiplication and is based on a V-cycle 
multilevel preconditioner Ca for the corresponding discretization by Powell-Sabim 
elements, while S, Cb are defined via (27)-(28) as explained. 

3.5. Further remarks. 

Other element types. In ??3.1, 3.3, 3.4, we have discussed a few triangular noncon- 
forming elements for second- resp. fourth-order boundary value problems. In these 
cases, we have chosen conforming linear elements resp. Powell-Sabin elements as 
reference elements, particularly, because for them optimal multilevel precondition- 
ers are known. Complicated conforming elements such as Argyris and Bell triangles 
or composite Clough-Tocher triangles, which do not allow for a straightforward con- 
struction of multilevel preconditioners, may be dealt with in the same conceptional 
way (for a slightly different approach, see [50, 17]). Generalizations of the Morley 
element to higher polynomial degree such as the semiloof or delinquent elements 
(cf. [44]) can be treated as well. We leave it up to the reader to consider more 
examples, e.g., from the list of (conforming and nonconforming) elements for thin 
plate bending which is contained in [32, Ch. 7], see also [19, 20, 5]. 

If the original discretization uses rectangular resp. quadrilateral elements, then 
for H1 problems bilinear elements (for rectangles) or the reduction to triangular 
linear elements (for quadrilaterals) are an advisable choice for the reference space 
V. What concerns plate bending problems, we have at least three candidates (con- 
forming Cl elements of low order) where optimal multilevel preconditioners are 
known: 

* Composite cubic quadrilaterals [24] (see Figure 4, where the 16 interpolation 
conditions are described which uniquely define the Cl piecewise cubic function 
inside each quadrilateral; in the finite element literature these elements are 
attributed to Sanders and Fraeijs De Veubeke, see [19, 32]); 

* Bogner-Fox-Schmit bicubic rectangles [39, 50]; 
* Biquadratic Cl tensor-product splines (the theory for this space of Cl test 

functions, which is closely related to standard finite difference discretizations 
on a shifted grid, follows easily from [38]). 

Though the considerations in [24, 37, 39, 50] are restricted to regular refinement, it 
is clear that the theory of multilevel preconditioners for these conforming discretiza- 
tions carries over to nested refinement (cf. [23, 38] concerning this point). Thus, 
the two-level reduction to standard multilevel solvers as proposed in the present 
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FIGURE 4. Composite cubic quadrilateral 

paper will be possible for these element types, too. For example, the specific pre- 
conditioner for the nonconforming rectangular Adini element described in [39] is 
based on a similar (to the Bogner-Fox-Schmit element) reduction argument. For 
rectangular elements, the use of the biquadratic spline spaces for preconditioning 
purposes seems to be even more economic with respect to the operation count per 
preconditioning step. 

The practical performance of our approach has still to be tested carefully. For 
example, an efficient implementation of the Powell-Sabin multilevel preconditioner 
[37], which we suggested to use in connection with triangular elements for plate 
bending (or of the composite cubic Cl quadrilaterals considered in [24]) is, to our 
knowledge, not yet available. For the Bogner-Fox-Schmit and Adini elements, some 
experiments have been carried out in [39]. 

Construction of error estimators. The basic norm equivalence (1) might be useful 
for other purposes such as the construction of a posteriori error estimators. To give 
an example, let us denote by V -VQ resp. V _ VL the subspaces of quadratic resp. 
linear finite element functions over a regular triangulation of a bounded polyhedral 
domain Q in two dimensions (once again, consider the case of homogeneous Dirichlet 
conditions on the boundary). The three-dimensional case can be treated similarly. 
Let a(., *) be a symmetric Ho elliptic variational problem which, when restricted to 
V, V, and W = V, leads to the bilinear forms used on these subspaces (to simplify 
the notation, we will use the letter a also for a and a). Finally, introduce the 
auxiliary form b on V by 

b~w w) = Eh(A) -2 cv w wv dx 
A 

Then (1) holds true (we leave this to the reader as an exercise; since V C V the 
operator Q is the natural injection, while Q corresponds to nodal interpolation by 
linear finite elements). 
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Now, denote by UQ resp. UL the solutions of the variational problems (VP) 
resp. (VP), where (D, 41 are restrictions of the same functional to the respective 
subspaces. Let e = UQ - UL, and define e by 

b(e,iv) = a(e,iv), Vi3 E V. 

Then, the two-sided inequality 

(30) a(e, e (~, j) a (e, e) 

holds with the same constants as in (1). This is obvious if one uses the properties 
of the additive Schwarz operator corresponding to (1), see [47, 49, 29]. A direct 
argument runs as follows: Since a(e, v) = 0 for all v E V, we can write 

b(j, j)2 = a(e, j)2 = inf a(e, e-v)2 < a(e, e) inf a(e-v, e-v), 
V v 

a(e, e)2 = inf a(e, e-v)2 = inf b(j, e-v)2 < b(j, e) inf b(e-v, e-v) . 
V V V 

It remains to verify the identity 

inf b( ii -v, ui- v) = inf I I Ii- VI 1 12, V ii EV, 
V V 

where jjj,5112 denotes the right-hand side in (1), and to apply this inequality in the 
appropriate directions. 

To see that (30) provides a computable error estimator, introduce the basis in 
VQ = V in a hierarchical manner: take the nodal basis functions Np- from VL = V, 
and add the nodal basis functions N6 e VQ corresponding to midpoints of edges 
into one set. Obviously, this basis of V is well-conditioned in the following sense: 

b(vivI) - c2p + c2 Vfv=E cpNp+ + ceNe E V. 
P e P e 

Therefore, 

(31) a(e, e) b(e, e) E b(e, NP)2 + E b(e, Ne)2 
P 6 

where the moments are explicitly computable as 

(32) b(e,Np) = a(e,,Np) = 0, b(eN6) = a(e,N6) = 1(N6)-a(uL,N6) 

and do not require the knowledge of UQ. Under the usual regularity assumptions, 
a(e, e) is a reasonable substitute for the true error of the discrete solution UL in the 
energy norm and can be approximately computed via (31)-(32) by a sum of error 
indicators corresponding to the edges of the triangulation. Note that this error 
estimator is almost the same as used in the well-known adaptive code Kaskade [25]. 
It is tempting to develop this idea of deriving error estimators further. For similar 
work on this topic, see, for instance, [1, 2, 3, 31, 46]. 
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